
Parameter estimation on gravitational-wave signals from compact binary inspirals
with arbitrary spin using Markov-chain Monte Carlo

Marc van der Sluys

(Dated: March 28, 2013)

We present a parameter-estimation code which uses a Markov-chain Monte Carlo (MCMC) tech-
nique to study the source parameters of gravitational-wave signals from the inspirals of stellar-mass
compact binaries detected with ground-based gravitational-wave detectors such as LIGO and Virgo,
including the spins of the binary members.

We discuss a number of experimental aspects of the MCMC algorithm that may allow us to
sample the parameter space in an efficient way and assess their effect. We conclude that there seems
to be no need to use adaptive update proposals, that correlated update proposals should only be
used in the burn-in phase, that parallel tempering has a clearly positive effect and that sinusoidal
temperatures may be used in parallel tempering after the burn-in.

In addition, we show the analyses of a few example inspiral signals of double black holes to indicate
the typical accuracy that can be expected from GW observations. In particular, we discuss the effect
that the presence of spin in the black holes has on the analyses, both for the case where spins are
allowed for in the MCMC and for the case where the black holes are assumed to be non-spinning.

I. INTRODUCTION

Inspirals of stellar-mass compact binaries induced
by gravitational radiation are among the most promis-
ing gravitational-wave sources for ground-based laser
interferometers, such as LIGO [1–3] and Virgo [4, 5].
If such a binary contains a black hole (BH), theoreti-
cal studies suggest it can be spinning moderately [6].
To date, more-or-less accurate values for the dimen-
sionless spins (aspin) of about 15 black holes in X-ray
binaries (XRBs) have been determined observation-
ally [see e.g. 7–10, and references therein]. Fender
et al. [11] compile a list of “trustworthy” spin values
for fifteen BHs in XRBs, of which four have “low”
spin aspin

<∼ 0.4 and the remaining 11 have “high”
spin aspin

>∼ 0.6 (see their Table 1 and Figure 1, and
their references to the observational papers). Recent
measurements of the BH-spin in Cygnus X-1 suggest
that it may be close to maximum rotation, shifting
the low vs. high spin balance for these 15 binaries to
3 – 12 [10, 12, 13]. However, it is not yet clear what
the observational biases are. Observed long-term (one
to three orders of magnitude longer than the orbital
period variations in the X-ray luminosity of black-hole
XRBs may be due to the precession of the inner accre-
tion disc [e.g. 14, 15]. For a compact binary inspiral, a
misalignment of a spinning black hole with the orbital
angular momentum will cause the binary orbit to pre-
cess in a similar way, introducing phase and amplitude
modulations in the gravitational-wave signal. This ef-
fect should be taken into account in the data analysis.
The accuracy with which the binary parameters can
be estimated from the gravitational-wave observation
is of significant astrophysical interest.

We developed a code called SPINspiral [16] which
implements a Markov-chain Monte Carlo (MCMC)
technique [17] to compute the posterior probability-
density functions (PDFs) of the source parameters, in-
cluding the spins of the binary components. This code
is a modification of an earlier parameter-estimation
code for analysis on binaries without spin [18, 19].
In addition to including post-Newtonian gravitational
waveforms with one [20] or two [21] spinning objects,

we have also implemented a number of improvements
designed to make the parameter-space exploration
more efficient, such as parallel tempering.

First results obtained with this code are described
in a number of earlier papers, discussing the accuracies
of parameter estimation on the inspiral signal from a
binary consisting of a black hole and a neutron star
(NS) and the influence of the spin of the BH on that
accuracy [22], the degeneracies in sky localisation for
a detection with only two interferometers, and the in-
fluence of spin on that degeneracy [23], the analysis of
hardware injections into LIGO data [24], and the ef-
fect of using LIGO data instead of Gaussian noise [25].
The code was also used in the NINJA project [26, 27].
A brief introduction to our MCMC implementation
was published in [28], and in the current paper, we
describe this implementation more fully, and discuss
the complications that are introduced when the effect
of spin is present in binary-inspiral signals, and the
reason why allowing for spin in the parameter estima-
tion is of pre-eminent importance.

SPINspiral was included in the automated LIGO-
Virgo compact-binary coalescence (CBC) follow-up
analysis pipeline [29] to estimate the physical parame-
ters from the interferometer data after the CBC detec-
tion pipeline [30] has identified the event in the data
stream and concluded that it is indeed a binary in-
spiral signal. The code is part of the LSC Algorithm
Library suite [LALSuite; 31].

This paper is organised as follows. In section II we
describe the way our code handles data, our choice
of waveforms and the basic signal characteristics we
use. Section III deals with the implementation of the
MCMC algorithm in the code and related details, such
as the choice of parameters, prior distributions, how
the chains are started, implemented update proposals,
and parallel tempering. We describe the diagnostics
that allow us to verify the quality of an analysis, and
hence the validity of the results, in section IV. The
statistical analysis of the Markov chains and the rep-
resentation of the posterior PDF are discussed in sec-
tion V. In section VI we present the results of example
MCMC analyses for a range of different signals, ob-
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tained with SPINspiral. In section VII we discuss
the strong points and weaknesses of our code, sum-
marise our conclusions and describe planned future
improvements.

II. DATA AND SIGNAL

A. Data handling

In order to obtain a data set, the code can ei-
ther read detector data directly, or we can simulate
a gravitational-wave signal embedded in noise by in-
jecting a waveform with parameters of our choice into
a stretch of Gaussian noise (i.e., adding the signal to
the noise). The resulting data set is filtered, down-
sampled, Fourier transformed, and subsequently ex-
amined by the MCMC analysis. A different stretch of
data, where no signal is supposed to be present, is used
to estimate the power spectral density (PSD). More
details of the data handling can be found in Röver
[19].

Test analyses show that the results of parameter
estimation on detector data are qualitatively similar
to the results using Gaussian noise, but can result in
somewhat larger uncertainties when the data are less
well-behaved, especially for low SNR [25].

1. Data reading

Noise data are read from files in the LIGO/Virgo
Frame format [32] in the time domain. This format
allows us to read detector data which contains some
‘signal’, e.g. an interesting trigger or an either known
or blind hardware injection [33], which we would like
to analyse, or presumed ‘clean’ detector data or Gaus-
sian noise at the designed sensitivity level for the de-
tectors [34] to do a software injection of a signal of our
choice. The Frame format also allows different groups
to exchange data, which allowed us to participate in
e.g. the NINJA project [26, 27].

Detector data are read in at a sampling rate of
16 kHz or 20 kHz for the LIGO and Virgo detectors
respectively.

2. Software injections of waveforms

Software injections are a useful method to test our
MCMC code, since a specific signal can be selected
and because the signal parameters are known, so that
it can easily be verified whether the correct parameter
values were found. If a software injection is to be
performed, this is done directly after the data is read
in, at the original sampling frequency and before any
filtering or downsampling are done. Thus, we obtain
a data set that is a good representation of a stretch of
detector data containing a signal.

3. Filtering and downsampling

After a data set with signal is obtained, either by
reading the detector data in directly from a Frame file,
or by the software injection of a waveform, the data
set is first filtered and then downsampled.

The data set is low-pass filtered using a finite-
impulse-response (FIR) filter. We typically find that
using 129 coefficients is sufficient and use a Remez
exchange [e.g. 35] algorithm [36] to compute these co-
efficients. The frequency ranges of the pass, transition
and stop band are determined as follows.

The lower cut-off frequency flow is effectively deter-
mined by the bandwidth of the detector used. We
typically use flow = 40 Hz for Initial LIGO/Virgo.
We want to filter out all frequencies higher than
the Nyquist frequency fNq, which is determined by
the sampling frequency that we want to use for the
MCMC analysis fMCMC (see below). For that pur-
pose, we use a transition band to smoothly connect
the low-frequency pass band to the high-frequency
stop band, and fNq = 1

2fMCMC is the maximum fre-
quency for the boundary between the transition band
and the stop band. The width of the transition band
is arbitrary, and should both be narrow enough to at-
tenuate as little of the signal as possible, and broad
enough to provide a smooth result. We find that a
width of 0.025 fMCMC provides a good and stable com-
promise. This then defines the maximum frequency
for the boundary between the pass band and tran-
sition band as 0.475 fMCMC. The high cut-off fre-
quency fhigh for the templates that we use should not
be higher than this frequency (fhigh < 0.475 fMCMC),
but may be manually set to a value lower than that.
Thus, for a typical analysis with a sampling frequency
fMCMC = 4 kHz, the pass band would cover 40.0 –
1946 Hz, the transition band 1.9 – 2.0 kHz and ev-
erything above 2 kHz would be completely attenu-
ated. In such a case we would use flow = 40 Hz and
fhigh ≤ 1900 Hz as frequency cutoffs for the waveform
template.

After filtering, the data are usually downsampled to
reduce the data set and hence the time needed for the
analysis. We typically use a sampling frequency for
the analysis of fMCMC = 4 kHz, but we can downsam-
ple to 1 kHz or less, if the frequency of the innermost
stable orbit (ISCO; a function of mass and spin [37])
of the presumed source allows it. Hence the factor
by which we downsample the data, usually a power
of two, is determined by the masses and spins of the
binary components, where higher mass and/or lower
spin allows for a lower upper cut-off frequency, hence
more downsampling and a faster analysis. In the case
of a real detection, the detection trigger would pro-
vide us with a good estimate of the masses and hence
of the downsample factor that should be used. The
downsampling itself is achieved simply by thinning the
data, using the weighted mean of a number of data
points to provide the value of the thinned data point.
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4. Windowing and Fourier transformation

In order to analyse the data in the frequency do-
main, they need to be Fourier transformed. To
reduce artificial contributions from outside the fre-
quency band we are interested in, such as bleeding,
the data are windowed. At the moment, the data
stretch in the time domain that is supposed to contain
the signal (tlow – thigh) is marked manually, but this
can easily be automated from the supposed time of
coalescence, the chirp mass, as provided by e.g. a de-
tection trigger, and flow. Because of the rounding off
that will be discussed below, the non-spinning, Newto-
nian approximation is sufficiently accurate (typically
to ≈ 1%) to estimate the time between the moment a
source with a chirp mass M enters the detector band
at flow and the moment of coalescence:

tcoal = 5(8π)−8/3

(
flow

Hz

)−8/3(M
M�

)−5/3

seconds.

(1)
In order to window the data, we use a Tukey win-

dow. For the i-th element of a discrete data set con-
sisting of N points (0 ≤ i < N), the windowing factor
is given by:

W(i) =
1−cos( 2π

α
i
N )

2 , 0 ≤ i ≤ αN
2 (2)

= 1, αN
2 ≤ i ≤ N−

αN
2 (3)

=
1−cos( 2π

α
i

N−i )
2 , N− αN

2 ≤ i < N (4)

(e.g. [38]). This window has a flat pass band bordered
by two cosine-shaped transition bands at high and low
frequency. The parameter 0 ≤ α ≤ 1 determines the
fraction of the window that is sinusoidal. The time
range of the pass band is set by tlow and thigh and has
a width ∆ t = thigh − tlow. We find that α = 0.15
is a good compromise: the attenuation is sufficient,
while the width of each wing of the Tukey window
is set to ≈ 0.09 ∆ t, hence the increase in the size
of the data set is only 18%. This optimal value was
found experimentally by increasing α starting from
a low value, computing the SNR, and selecting the
value for α where the SNR stabilised. For LIGO data
alone, α ≈ 0.05 was sufficient, but when Virgo data
are used α ≈ 0.15 is needed. The boundaries of the
data stretch tlow and thigh are then updated to enclose
the transition regions of the Tukey window.

The beginning and end of the data stretch in the
time domain are rounded off to the nearest second
before tlow and after thigh. This rounding off ensures
that the whole signal is included.

The windowed data set is then Fourier transformed
using the Fast Fourier Transform (FFT) algorithm
from the fftw3 library [39]. Finally, the Fourier-
transformed data set is normalised by dividing by the
sampling rate to provide the frequency-domain data
set that can be analysed by the MCMC.

5. PSD generation

When reading in detector noise, the noise estimates
are based on data taken close to the time of the signal,

without including the signal itself. A stretch of 256
seconds of data, divided in 31 overlapping segments
of 16 s each, is used to estimate the one-sided power-
spectral density (PSD) of the noise Sn(f).

The data for the PSD estimation are filtered, down-
sampled, windowed and Fourier transformed in a sim-
ilar way as the data that are to be analysed by the
MCMC (see Sects. II A 3 and II A 4). The downsam-
pling of the PSD happens in log(PSD), by taking the
weighted mean of the two adjacent log(PSD) values
for each new (downsampled) frequency bin. The noise
PSD is used to compute the overlap of two waveforms,
which is needed to calculate the likelihood and SNR
(see Sect. II C).

B. Waveforms

1. Apostolatos, 1.5-pN, single-spin waveform

In order to quickly test our methods, we use a
simplified waveform that takes into account post-
Newtonian (pN) expansions up to the 1.5-pN order in
phase and is restricted to the Newtonian order in am-
plitude. The waveform includes the simple-precession
prescription [20]. This choice of waveform template
allows us to investigate the first-order effects of spin
(spin-orbit coupling), as long as either only one binary
member has spin, or the mass ratio is sufficiently far
from unity. Example waveforms for different values
of spin are shown in Fig. 1. In comparison to higher-
pN or double-spin waveforms, this waveform can be
computed analytically and has lower dimensionality,
so that the computational cost per iteration is lower
and the number of iterations needed for convergence
is smaller.

The assumption of only one spinning component
can be valid in cases where only one of the binary
members is spinning, but also in the case of a large
mass ratio (e.g. a 10M� BH and a 1.4M� NS), in
which case the spin of the less massive object can be
neglected.

Each waveform template is computed in the time
domain, and then windowed and Fourier transformed.
The calculation of the likelihood, which measures how
well a model waveform matches the data, is carried out
in the frequency domain.

2. SpinTaylor, 3.5-pN, double-spin waveform

Although the 1.5-pN, simple-precession waveform
is useful to investigate the principal effects of spin
on parameter estimation, a more realistic waveform
is needed to properly analyse detected signals. The
waveform we use for this is the SpinTaylor waveform,
which provides waveforms up to the 3.5-pN order in
phase and at the Newtonian order in amplitude. We
use the implementation in the LSC Algorithm Library
[LAL; 31], which closely follows [21]. In addition to
the higher pN order, the SpinTaylor waveform allows
for spins on both of the binary members and takes into
account effects like spin-spin coupling and Thomas
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FIG. 1: Last second of the tapered detector signal (strain) from a 10.0 + 1.4M� BH-NS binary inspiral with a non-
spinning NS and a BH with aspin1 = 0.0 (top panel), aspin1 = 0.5 (middle panel) and aspin1 = 1.0 (bottom panel). The
angle between the orbital and spin angular-momentum vectors (θspin1) is 20◦. The vertical scale is the same in the three
panels, the three SNRs scale as 1.00 : 1.10 : 1.20. The changes in morphology and SNR between the signals depend on
the projection of the wave onto a detector. The waveform type used is that using simple precession, by [20] as described
in our Sect.II B 1.

FIG. 2: Last second of the tapered detector signal (strain) from a 11.0+7.0M� BH-BH binary inspiral. The spin magni-
tudes are (aspin1,aspin2) = (0.0,0.0), (0.9,0.0), (0.0,0.7) and (0.9,0.7), the angles between orbit and spin are (θspin1,θspin2)
= (0◦,0◦), (70◦,0◦), (0◦,50◦) and (70◦,50◦) for the four panels, respectively. The four SNRs scale as 1.00 : 1.14 : 1.09 :
1.18. The changes in morphology and SNR between the signals depend on the projection of the wave onto a detector.
The deviations from a simple chirp in the last panel are dominated by the spin from the more massive, faster spinning
binary component. These deviations are less dramatic than in Fig.1 in part because the mass ratio lies closer to unity
in this case. We used the SpinTaylor waveform described in Sect.II B 2.

precession. Hence, the SpinTaylor templates allow us
to compute waveforms that are quite close to those
which nature provides, as has been shown by com-
parison to numerical-relativity waveforms [e.g. 40–45].
Using the higher pN-order of the SpinTaylor waveform
as an MCMC template, instead of the 1.5-pN order
waveform, ensures smaller biases in the parameter es-
timation, due to the smaller mismatch between the

template and waveforms found in nature.

In addition to that, the SpinTaylor waveform also
contains more detailed information about the source,
enabling us to estimate the source parameters more
accurately. In an early study, we showed that this
improvement in accuracy can be on the order of a
factor of two for the individual masses [23].

Finally, as we will demonstrate in Section VI,
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parameter-estimation results can yield strong system-
atic errors when the model that is used is does not
correctly or fully describe the source of the signal.
Hence, if one conducts parameter estimation on a sig-
nal from a binary with a spinning member, but using
a waveform template that does not take into account
the spin, or if the signal contains effects of two spins
whereas only one is fitted for, the results (especially
chirp mass) cannot be trusted. Hence, a more general
waveform typically makes a better template for pa-
rameter estimation, and SpinTaylor is clearly prefer-
able over more simplified waveforms for the final anal-
ysis.

However, this precision comes at a cost. The wave-
form templates can no longer be computed analyti-
cally, and involve numerical integration of differential
equations. Compared to the Apostolatos et al. wave-
form, the CPU cost of a single SpinTaylor template
is roughly 2.5 times as high. Hence, much work still
needs to be done to improve the turnover timescale
for analyses with this waveform (Sect. VII).

3. GeneratePPN, 3.5-pN, no-spin waveform

We also incorporated a non-spinning waveform from
LAL to analyse the effects of spins on parameter esti-
mation, GeneratePPN [46]. It is the fastest template,
and has the lowest dimensionality (9 parameters), al-
lowing for the shortest MCMC runs. As for the Spin-
Taylor waveform, GeneratePPN goes up to 3.5 pN or-
der in phase and is Newtonian in amplitude.

4. PhenSpin, 3.5-pN, phenomenological double-spin
waveform

For high masses (35M� and higher) the ringdown
of the waveform is expected to be in the LIGO/Virgo
band and contribute non-negligibly to the SNR. In or-
der to analyse those signals, we use the phenomenolog-
ical waveform PhenSpin [47]. It consists of a SpinTay-
lor inspiral phase to which is added a phenomenologi-
cal merger-and-ringdown part tuned to Georgia Tech
numerical waveforms.

5. Frequency cut-offs and tapering

The time-domain waveform is computed in principle
between the low and high cut-off frequencies flow and
fhigh as defined in Sect. II A 3. However, we also verify
that the frequency increases monotonously as a func-
tion of time. When this condition is no longer fulfilled,
i.e. when the gravitational-wave frequency decreases
between two subsequent time points, we judge the re-
mainder of the waveform as unphysical and treat this
as having reached fhigh by cutting off the waveform.

While the abrupt start of our waveform template at
flow has relatively little effect — since it takes place
in the low-frequency wing of the detector noise curve,
where the noise level is high — the end of the wave-
form template typically occurs at higher frequencies,

where the detectors are more sensitive. The abrupt
cut-off of the waveform at the high-frequency end of
the template would result in a discontinuous ampli-
tude and would thus cause spurious effects in the
Fourier transform. To suppress these effects, we taper
off the time-domain waveform at the high-frequency
end, by multiplying the amplitude with a factor

ftap(vorb, vorb0) =
1− tanh

[
100

(
v2

orb − v2
orb0

)]
2

, (5)

where vorb is the Keplerian orbital velocity, and vorb0

is that quantity at one binary orbital period before the
waveform is cut off. The factor 100 forces the taper to
take place over approximately 1–2 gravitational-wave
cycles.

6. Scaling injection signal-to-noise ratio

The signal-to-noise ratio (SNR, Eqs. 14,15) of an in-
jected signal depends, apart from the binary param-
eters, on the detector orientation and the exact noise
realisation. While changing injection parameters like
the masses or spins between two injections will have
similar effects (change in amplitude, frequency evo-
lution and “shape” of the waveform) in different in-
terferometers, the effect of a change in sky position or
binary orientation differs from interferometer to inter-
ferometer in a detector network, due to the different
projections of the signal onto the detector (known as
the “antenna pattern”).

Since the accuracy of parameter estimation scales
roughly with 1/SNR [e.g. 48], we need to eliminate
this influence when determining the effect of a change
in setup or a different source. In order to obtain the
desired SNR ρtot,0 we first inject the signal into the
noise for a typical distance (e.g. dL,0 = 20 Mpc) and
compute the SNR ρtot of that injection using Eq. 15.
The waveform is then re-injected in the same stretch
of noise but with the new distance

dL = dL,0 ·
ρtot

ρtot,0
. (6)

Scaling the SNR by changing the distance scales the
amplitude only, and hence preserves the frequency
evolution and projection of the waveform onto the dif-
ferent detectors.

C. Signal characteristics

1. Overlap

The overlap between the two signals a(f) and b(f)
in the frequency domain is defined as:

〈a|b〉 ≡ 4 Re

(∫ ∞
0

a(f)b∗(f)

Sn(|f |)
df

)
, (7)

where Re() is a function that takes the real part of an
expression, the asterisk denotes a complex conjugate
and Sn(|f |) is the one-sided power-spectral density.
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2. Likelihood

We follow a Bayesian approach to infer the poste-
rior probability-density functions (PDFs), also sim-
ply called posteriors, of the 12–15 parameters that
describe our waveform. The posterior of a parame-

ter vector ~λ describing a fixed model M and given an
observed data set d follows from Bayes’ theorem:

p(~λ|d,M) =
p(~λ|M) p(d|~λ,M)

p(d|M)
∝ p(~λ)L(d|~λ), (8)

where p(~λ) is the prior distribution of the parameters,

and L(d|~λ) is the likelihood function. We calculate the

likelihood for a model waveform m(~λ) with parame-

ters ~λ and data set d as measured by a detector i in
the usual way, using the notation from Eq. 7 for the
overlap:

Li(d|~λ) ∝ exp

(
−1

2
〈d−m(~λ)|d−m(~λ)〉

)
(9)

Since we will be considering the ratio of likelihoods,
we do not need to take into account the normalisation
factor, and it is sufficient to compute the proportion-
ality in Eq. 9.

The practical implementation of Eq. 9 is done by
defining the relative likelihood as

log
(
Li(d|~λ)

)
= 〈d|m(~λ)〉 − 1

2
〈m(~λ)|m(~λ)〉, (10)

where log is the natural logarithm and the brackets
denote the overlap of two signals as defined in Eq. 7.
Equation 10 defines the likelihood of the data for a

null-model signal (i.e., m(~λnull) = 0) as log (Lnull,i) ≡
log
(
Li(d| ~λnull)

)
= 0, or Lnull,i = 1.

For a typical analysis we use the data from two or
(preferably) three non-colocated interferometers (the
two 4-km LIGO detectors at Hanford and Livingston,
and the 3-km Virgo detector near Pisa). The noise of
these interferometers is independent, in which case the
total likelihood for a coherent network of N detectors
can be found by multiplying the individual likelihoods:

Ltot(d|~λ) =

N∏
i=1

Li(d|~λ). (11)

The expression for the PDF generalises to

p(~λ|d) ∝ p(~λ)Ltot(d|~λ), (12)

while the null-likelihood remains

Lnull =

N∏
i=1

Lnull,i = 1. (13)

3. Signal-to-noise ratio

The signal-to-noise ratio (SNR or ρ) of an injected

model signal m with a parameter set ~λ as detected by

a single detector i can be computed as follows:

ρi(~λ) =

√√√√√4

∫ fhigh

flow

∣∣∣m̃(~λ, f)
∣∣∣2

Sn(f)
df. (14)

In this expression, m̃(~λ, f) is the frequency-domain
model waveform and Sn(f) is the noise PSD. For nu-
merical calculations the integral is replaced with a
sum, df with the width of the frequency bins ∆ f ,
and the sum is computed over the frequency bins be-
tween the frequency cut-offs flow and fhigh. The total
SNR for a network of N detectors is given by

ρtot(~λ) =

√√√√ N∑
i=1

(
ρi(~λ)

)2

. (15)

For a given MCMC analysis, the expected network
SNR can be obtained from the maximum-likelihood
point found in the Markov chains from

ρtot =

√
2 log

(
Lmax

Lnull

)
, (16)

which, because of Eq. 13, reduces to

ρtot ∼
√

2 log (Lmax). (17)

Henceforth, we will refer to the expected SNR as sim-
ply “SNR”.

III. IMPLEMENTATION OF MCMC

The code SPINspiral is based on a Markov-chain
Monte Carlo code that was developed for the analysis
of binary-inspiral signals where no spin is present [18,
19, 49, 50]. In this section, we describe the features
of our implementation, some of which are taken from
this earlier code, and some of which were introduced
in the present code for use on inspirals with one or
two spinning objects.

A. Choice of MCMC parameters

The waveform for an inspiral with non-spinning
objects is described by nine parameters: the chirp

mass M ≡ (M1M2)3/5

(M1+M2)1/5
, symmetric mass ratio η ≡

M1M2

(M1+M2)2 , the luminosity distance dL and sky posi-

tion α (right ascension) and δ (declination), the time
and orbital phase at the moment of coalescence tc,
ϕc, and two angles that define the orientation of the
binary ι (inclination) and ψ (polarisation angle).

Adding spin for each binary member increases the
dimensionality of the parameter space with three, to
twelve for an inspiral with a single spin and fifteen
for the case where both spins are fitted. The addi-
tional parameters are the dimensionless spin magni-
tude aspin1,2 ≡ S1,2/M

2
1,2, the angle between spin and

orbital angular momentum at the moment of coales-
cence θspin1,2 and the precession phase at coalescence
ϕspin1,2.
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B. Prior distributions

We use prior distributions that are uniform in
log(dL) or d3

L, cos(θspin1,2), cos(ι), sin(δ), (the sine
is used for parameters defined in the domain [−π2 ,

π
2 ],

the cosine for those ∈ [0, π]) and in the linear scales
of the remaining parameters.

The prior ranges for the MCMC parameters that
we use depend in part on the value that is pro-
vided by the detection trigger, which we will de-
note by the subscript tr, in particular the chirp mass
Mtr, the time of coalescence tc,tr and the effective
luminosity distance dL,eff,tr (for software injections,
we will use the injection values instead). Espe-
cially for M and tc it is important not to choose
too wide prior ranges in order to constrain the pa-
rameter space that needs to be sampled. The de-
fault values we use are: M ∈ [0.5Mtr, 2.0Mtr];
η ∈ [0.0, 0.25]; tc ∈ [tc,tr − 50 ms, tc,tr + 50 ms]; dL ∈
[10−3 Mpc, 1.5 dL,eff,tr]; aspin1,2 ∈ [0, 1]; cos(θspin1,2) ∈
[−1, 1]; ϕspin1,2 ∈ [0, 2π]; α ∈ [0, 2π]; sin(δ) ∈ [−1, 1];
cos(ι) ∈ [−1, 1]; ψ ∈ [0, π] and ϕc ∈ [0, 2π]. When
we have triggers from multiple interferometers, they
usually yield (somewhat) different parameter values.
We determineMtr and tc,tr by taking the mean of the
available values, and dL,eff,tr by taking the maximum
of the different values.

We use these broad, uniform priors to keep our
study general. However, when additional information
becomes available (for instance the time and sky lo-
cation of a gamma-ray burst from an electromagnetic
observation), we can restrict our priors accordingly.

C. Starting values for the Markov chains

The purpose of a parameter-estimation analysis is
to first find the true source parameters of a GW signal,
and then to describe their probability-density func-
tions (PDFs). Although some of the source parame-
ters which will be provided to the MCMC code from
the detection trigger will be quite accurate, notably
the chirp mass and time of coalescence, information
for the other parameters is usually less-well known or
even completely unknown. As a consequence, it is
impossible to start the Markov chains from “good”
initial values, since, even if two or three of the 9–15
parameters have the correct values, this bears little
or no significance in the multi-dimensional parameter
space in which the chains sample, and these parame-
ters may well drift away from their correct values in
the initial part of the analysis.

For each analysis, we usually start multiple, inde-
pendent chains, which helps to determine convergence
(Sect. IV A), quantify sampling quality (Sect. IV B)
and select Markov-chain data for postprocessing
(Sect. V). In order to do this, it is important that the
chains are started from different locations in parame-
ter space. Hence, rather than only giving the separate
Markov chains different random-number seeds, we also
start them somewhat offset from the trigger values if
such information is available, or completely randomly
from the prior range if it is not. This ensures that

the chains will start exploring the parameter space at
a lower likelihood before they find the true modes of
the PDFs, and allows us to verify the agreement of
the chains on the parameter values and especially on
the maximum likelihood value they find.

We draw the starting values for our Markov chains
as follows (again using the subscript tr to denote val-
ues obtained from a search trigger). For the chirp
mass we pick a value randomly from a Gaussian dis-
tribution with a width of 0.25M� around Mtr and
for the time of coalescence we do the same from a
Gaussian distribution of 100 ms width around tc,tr.[63]
The starting values for each of the other parameters
are drawn randomly from a uniform distribution that
spans the entire prior range of that parameter (see
Sect. III B). Before we accept an initial parameter set,
we require that L > Lnull, where Lnull is the likelihood

for the case of a null-signal model, i.e. m̃(~λ, f) = 0 in
Eq. 9. Because of the way we implemented the likeli-
hood calculation (Eq. 10), this requirement reduces to
L > 1. As long as this condition is not met, we redraw
the initial parameter set. This ensures an efficient
start of the chain and hardly ever requires more than
a few hundred cheap (no parallel tempering) draws.

When testing our MCMC code by injecting a sig-
nal ourselves and simulating an actual parameter-
estimation analysis, we carry out a semi-blind analysis
and treat the injection values as trigger values for the
chirp mass and time of coalescence. Hence, the chains
are started from parameter values that are offset from
the injection values, rather than from the trigger val-
ues for these two parameters, and randomly from the
prior for all other parameters, as we do in the case of
a real analysis. In this way, we model the information
that will be available after a detection trigger has been
created by the LIGO-Virgo data-analysis pipeline.

D. Update proposals

The Markov chain is created as follows. If in the
current iteration i, the chain has the location in pa-
rameter space (set of waveform parameters, or state)
~λi, we propose a random jump ∆~λi to the new location
~λi+1 = ~λi + ∆~λi. Since the jump proposal is random,
the next state of the chain should depend only on
the current state, thus giving the chain its Markovian
property. We will discuss a number of points below
where we deviate from the Markovian rules, and re-
mind the reader here that the Markovian property is
a sufficient, but not a necessary condition to obtain
an ergodic chain.

We then compute the likelihood for the new state
as given by Eq. 12 and determine whether to accept it
using a Metropolis algorithm [17, 51]. Thus, we com-
pare the acceptance probability, which is given by the
ratios of the posterior (the left-hand side in Eq. 18), to
a random number r drawn from a uniform distribution
between 0 and 1:

p(~λi+1)

p(~λi)

L(d|~λi+1)

L(d|~λi)
> r. (18)
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The implicit assumption when using a Metropolis
sampler is that the probability of jumping from state
~λi to state ~λi+1 is equally likely as the reverse jump.

The jump to state ~λi+1 is accepted if Eq. 18 is fulfilled.
Otherwise the jump is rejected, the chain keeps the old

parameter set ~λi+1 = ~λi and a new iteration is started

by drawing a new random jump proposal ∆~λi+1 to a

different state ~λi+2. Equation 18 shows that a new
state is always accepted when it increases the value of
the posterior, and that a larger decrease in this value
means a smaller probability of acceptance.

1. Adaptation

We use an adaptive scheme for the proposed jump
size [52]. The size of the jump proposal for the pa-
rameter λj (the j-th element of the parameter vector
~λ) is drawn from a Gaussian distribution with width

σjjump. Thus, these widths form a vector ~σjump with

the same length as ~λ. The adaptation of the jump size
consists of increasing σjjump by multiplying it with a
factor facc when a proposed jump in the parameter
λj is accepted and decreasing σjjump by multiplying it
with a factor frej when a proposal is rejected. In a typ-

ical analysis, we use frej = 0.5 and facc = f

(
αacc−1
αacc

)
rej ,

where 0 < αacc < 1 is the target acceptance ratio. So
far, we have used αacc = 0.25, which (for frej = 0.5)
results in facc = 8.0 so that one acceptance and three
rejections return the original value for σjjump and in-

deed (on average) 25% of the proposals are accepted
(as designed with αacc = 0.25). We are planning to
explore different (especially larger) values for αacc.

While this scheme makes the chains non-Markovian
in principle, ~σjump quickly reaches an equilibrium
value (when averaged over several times 1/αacc itera-
tions) and the adaptation should not affect the ergod-
icity of the chains.

2. Uncorrelated proposals

The default method for choosing a jump proposal
is to draw the jump size independently in the differ-
ent dimensions of the parameter space. This implies
that adaptation is done per parameter as well. We
make these updates in two categories. The first cat-
egory contains single-parameter updates, where the
likelihood is calculated after proposing a jump in one
parameter only, thus deciding whether to accept the
jump for each parameter separately. The second cat-
egory involves proposing a jump in all parameters at
once before calculating the likelihood only once (a
‘block update’). This is typically done in 10% of the
uncorrelated update proposals. For both categories of
uncorrelated update proposals the same vector ~σjump

is used.

3. Correlated update proposals

There can exist strong correlations between param-
eters, in which case uncorrelated jump proposals can
be very inefficient.[64] We implemented a method to
calculate the correlations between the parameters of a
block of Ncorr iterations (typically Ncorr ≈ 103−104).
We then draw the subsequent Ncorr jump proposals
from a multivariate normal distribution that is given
by the Cholesky decomposition of this covariance ma-
trix.

By using the covariance matrix computed from past
iterations in order to propose updates, we violate the
Markovian property. Typically, however, the matrix
is only updated at the beginning of the Markov chain
and it is more or less constant during the remainder
of the iterations, so that the ergodicity of the chain is
not affected.

The correlated update proposals are always block
updates of all nine, twelve or fifteen parameters at
once, hence there is a separate σjump, corr for these
updates. In a typical MCMC analysis, we do 70–90%
of the update proposals in a correlated way, hence 10–
30% in an uncorrelated way.

a. Updating the correlation matrix We recom-
pute the covariance matrix and its Cholesky decom-
position at the end of each block of Ncorr iterations,
and decide whether to use the new matrix or not
by checking how the diagonal elements of the matrix
have changed. This is necessary because the new ma-
trix may not always be a good representation of the
true local covariance matrix, for example because the
chains happened not to explore the local parameter
space very broadly or very well during those Ncorr it-
erations. If that is the case, using the new matrix can
lead to sampling of an even smaller part of the param-
eter space, and the chains are prone to get stuck after
a few matrix updates. This problem does not arise
if we accept the new matrix only if it does not lead
to (much) smaller jump sizes. We find that accept-
ing the new matrix only when ∼ 50% of the diagonal
elements have decreased in value provides the desired
result.

E. Parallel tempering

The problem that arises when using MCMC for pa-
rameter estimation, and especially to find the (un-
known) modes of the PDFs, is that the chains should
typically be broad enough to sample the whole allowed
prior parameter ranges, while also being able to probe
the narrow region of maximum likelihood in a detailed
way. These two demands are almost mutually exclu-
sive, but the technique known as parallel tempering
offers a solution [e.g. 19, 53, 54].

Parallel tempering consists of several (Npch) parallel
chains that each have a different ‘temperature’. In
addition to the default Markov chain with T = 1,
parallel chains of higher temperature are computed.
Hotter chains are more likely to accept a jump that
decreases the likelihood, by adjusting Eq. 18 to accept
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FIG. 3: An example of parallel tempering for a number of chains of different temperature during the burn-in (see
Sect. IV A) of an MCMC analysis. Top panel: log Posterior value as a function of iteration number; Middle panel: value
of the chirp mass vs. iteration number for the same analysis. The different symbols indicate the different temperature
chains: red plusses: T = 1, green circles: T = 2.5, blue crosses: T = 6.3, and cyan squares: T = 15.9. The vertical
dashed line in both panels indicates where the T = 1 chain has burnt in, the horizontal dashed line shows the values
of the injected signal. The high-temperature chains explore a wide range of parameter values at low Posterior values,
while the T = 1 chain starts sampling the region of interest in detail after the burn-in. Bottom panel: PDFs for the four
temperature chains from the first two panels, but generated using Markov-chain data from before and after the burn-in.
The narrow peak comes from the T = 1 chain, the broad, flat distributions come from the two highest-temperature
chains.
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a jump when:

p(~λi+1)

p(~λi)

(
L(d|~λi+1)

L(d|~λi)

) 1
T

> r, (19)

where T ≥ 1 is the temperature of the chain. (Eq. 19
can be viewed as the definition of the “temperature”
T .) The property of more frequently accepting jumps
that lower the likelihood allows a hot chain to move
around in parameter space more widely than a cooler
chain, thus allowing it to discover different modes.
Hence, a combination of hot and cool chains can probe
both wide parameter ranges and the narrow region(s)
of maximum likelihood. In order to do so, the chains
must be able to exchange information. This is done
by swapping the parameter sets between two parallel
chains with Tm < Tn whenever:(

Ln
Lm

) 1
Tm
− 1
Tn

> r. (20)

Since the likelihood that is needed to determine
whether to swap the parameter sets was already com-
puted, this decision comes almost for free, and we
make it for every pair of chains at every iteration.
We start by comparing the lowest-temperature chain
with Tm=1 = 1 to all the chains with Tn>m, and then
do the same for m = 2, . . . , Npch − 1[65].

1. Setting up a temperature ladder

The temperature ladder is determined by setting
the lower temperature to T = 1. This is the only chain
that is saved and used to create the PDFs. One also
has to choose a maximum temperature Tmax, which is
typically the lowest temperature that allows the chain
to scatter over the whole allowed parameter ranges
quickly. Because a signal with a higher SNR results in
more contrast in the parameter space, we need to in-
crease the value of Tmax when analysing a higher-SNR
signal. The last quantity to choose is the number of
parallel chains Npch in the temperature ladder. This
will be a compromise between high computation speed
(low Npch) and high swap efficiency for the chains by
having small differences between adjacent tempera-
tures (high Npch). The temperatures are then cho-
sen equidistantly in log(T ) [19]. Our typical setup is
Npch ≈ 7 and Tmax ≈ 30 − 50 for SNRs between 10
and 20. The first line of Table I gives an example of
such a temperature ladder.

2. Sinusoidal temperatures

The obvious drawback of parallel tempering is that
one has to calculate a handful of chains, instead of
just one, increasing the computational power needed
by the same factor. In order to reduce the number
of chains in the temperature ladder, we experimented
with the implementation of sinusoidal temperatures
for all chains with T > 1. In order to do this, we set up
our temperature ladder as before, but now sinusoidally

TABLE I: Example setup for sinusoidally varying temper-
ature chains with Npch = 5 and Tmax = 30.

m 1 2 3 4 5
T0,m 1.0 2.3 5.5 12.8 30.0
∆Tm 0.0 1.3 3.2 7.3 17.2
Tmin,m 1.0 1.0 2.3 5.5 12.8
Tmax,m 1.0 3.6 8.7 20.1 47.2

oscillate the temperature of each chain m 6= 1 with an
amplitude ∆Tm. We find that the swapping of chains
is efficient when we choose ∆Tm = Tm − Tm−1 for
each chain m > 1, so that the minimum temperature
of each chain is equal to the mean temperature of
the next cooler chain. Furthermore, we make sure
that temperatures of adjacent chains are in antiphase,
optimising the overlap at the extrema (maxima where
the next higher-temperature chain has minima, and
vice versa). In this setup, we can use Npch ≈ 4 − 5
and Tmax ≈ 15 − 30 for SNRs between 10 and 20,
thus reducing the computational cost of the MCMC
analysis with parallel tempering. An example of such
a setup is shown in Table I. We suggest that the period
of the temperature variation should not be too close
to Ncorr (see Sect. III D 3) and that a too short period
may endanger the ergodicity of the chain. Hence we
choose a period for the sinusoidal temperatures that
is ∼ 5 ·Ncorr.

F. Thinning of the Markov chains

While sampling the parameter space by creating
jump proposals and determining whether the propos-
als should be accepted or not as described above, we
may decide to not store every point in the parameter
space that was ever visited. Instead, we typically save
every n-th state of the Markov chain, where a good
value of n is estimated before the analysis begins and
the value remains fixed throughout an MCMC run.
Lower values are preferred for more complicated anal-
yses, and typical values for n that give good results
are 100, 50 or 25 for analyses with a network con-
sisting one, two or three detectors, respectively. This
thinning of the chains decreases the correlations be-
tween subsequent states and reduces the amount of
disc space needed to store the data. In principle, more
thinning can be done as postprocessing.

IV. VERIFICATION OF MCMC RESULTS

In Section III C, we presented our use of multiple
(typically 5–10), independent Markov chains for the
analysis of a particular data set, each of which is
started from different initial parameters (either offset
from trigger values, or drawn completely randomly),
and hence a different (and typically low) value for the
likelihood. Here, we describe how we use these indi-
vidual chains to determine the quality of the results of
such an analysis. In Sect. IV A, we explain how we de-
termine whether each of the chains has converged and
at which iteration this happened, i.e. when the burn-
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in phase ended. In addition, this tells us whether any
of the chains did not converge, for instance when it got
stuck at some local maximum in likelihood in a par-
ticular location of the parameter space, and we should
ignore these chains. In the case of our semi-blind anal-
ysis, it is easy to recognise such chains, since we can
see whether the chains have found the likelihood (and
parameter values) of the injected signal. In the case
of a real (and completely blind) analysis, consistency
between the results of the independent Markov chains
can (nearly) ascertain that they have found the high-
est likelihood present. Finally, this analysis indicates
which fraction of the independent chains may have
converged, and hence whether we can trust the re-
sults in the first place. In Section IV B, we describe
how multiple chains allow us to determine whether
the chains are sampling properly and efficiently, by
comparing the variances between chains with those
within each chain using the mixing parameter R̂. This
method verifies the correspondence between the PDFs
of the different chains rather than their (maximum)
likelihoods.

A. Determining burn-in length and convergence
from the maximum likelihood

In order to test the convergence of the chains in
an automated way, we note that the Markov chains
may find a maximum value for the likelihood logLmax

which exceeds the likelihood of the true parameter
set logLtrue. The expectation value of the difference
between the two is given by

E∆L ≡ E[logLmax − logLtrue] =
Npar

2
, (21)

where Npar is the number of parameters that is fitted
for in the MCMC analysis [19]. For the signals we
consider, E∆L lies roughly between 4 and 8.

In the results of a given analysis, we find the sin-
gle maximum likelihood in all the independent chains
logLmax,all and then for each individual chain in turn,
we find the first iteration where the the likelihood ex-
ceeds the threshold value logLthr ≡ logLmax,all−E∆L

and call this iteration `burn + 1. Thus, we have deter-
mined the length of the burn-in phase `burn, which is
different for each chain, and we will use the data from
each chain starting from iteration `burn + 1 to do the
statistical analysis of the chains. An example for a
set of five converging Markov chains can be found in
Figure 4.

If the convergence of the chains is bad, we will usu-
ally find that only a small number of chains ever reach
logL > logLthr and hence will not contribute any iter-
ations to the analysis. If the number of ‘contributing
chains’ is 50% or smaller, we will in principle reject
the whole analysis as not converged and hence incon-
clusive. A converged fraction of 70–80% or more is
usually a strong indication (though not a watertight
proof!) that the results of the converged chains are
valid. Hence, for a typical MCMC simulation using
5 or 10 independent chains, we demand that at least
3 or 6 of them converge, respectively (note that one

chain always ‘converges’), and would prefer at least 4
or 8 converging chains, in order to trust the results.
We would like to stress that this agreement between
maximum likelihood values is a necessary, but not a
sufficient condition; if the chains do not agree, we have
to discard the results, but the method cannot prove
that a set of Markov chains converged.

B. Determining convergence from the sampling
quality

1. Potential scale-reduction (mixing) factor R̂

An important question in Markov-chain Monte
Carlo techniques is that of determining how well
the chains have sampled the parameter space, also
known as the mixing of the chains. In order to do
this we compute the potential scale-reduction factor
(PSRF) R̂, as described by Gelman and Rubin [55],
but without the correction for the degrees of freedom
df/(df − 2), as this factor turns out to be both in-
correct and minor [56]. When we have m chains with
(at least) n iterations after the burn-in each, we can
for each parameter λj compute the mean of the i-th
individual chain and the mean of all chains combined

µch
j
i =

1

n

n∑
k=1

λji (k)

µall
j =

1

m

m∑
i=1

µch
j
i .

We then compute the variances of the data points for
each chain and the variance within the m values of
µch

j
i

σ2
ch
j

=
1

m(n− 1)

m∑
i=1

n∑
k=1

(
λji (k)− µch

j
i

)2

,

σ2
µch

j
=

1

m− 1

m∑
i=1

(
µch

j
i − µall

j
)2

.

Finally, we compute the PSRF

R̂j =
n− 1

n
+
σ2
µch

j

σ2
ch
j

(
m+ 1

m

)
, (22)

which expresses how much further one would expect
the PDFs to expand before the sampling of the chains
is perfect. Hence in practice R̂j > 1 and the closer
it is to unity, the better is the sampling. We find
that when strong correlations are present, it is harder
(i.e. it requires much longer chains) to get R̂j close to

unity. Usually, we are satisfied with R̂j <∼ 1.2 for most
parameters. We also find that when distributions are
multimodal, such as the sky position when using data
from three non-colocated interferometers, R̂j values
may be somewhat higher while the mixing in each
mode looks reasonably good, though the chains make
many more jumps within a mode than between modes.
In order to quantify the sampling of an entire analysis
with one number, we use R̂, defined as the median
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FIG. 4: Example of convergence for five different Markov chains (indicated by the different symbols/colours) analysing
the same data set, but starting from different offset starting values. Top panel: logarithm of the posterior as a function
of iteration number. The horizontal dotted lines at low posterior indicate the starting values of the chains. The two
horizontal dash-dotted lines at high posterior indicate the highest likelihood value found in all chains (Lmax; top line
and solid star) and Lmax −Npar/2 (bottom line). Each of the chains is assumed to have burnt in when they first cross
the lower dash-dotted line, and the iteration at which this happens is indicated by a vertical dashed line. Bottom panel:
value of the chirp mass as a function of iteration number for the same five chains. The symbols of the different chains are
the same as in the top panel, the vertical dashed lines again indicate the point where the burn-in ends. The horizontal
dotted lines show the starting values for each chain, the horizontal dash-dotted line indicates the true value of the chirp
mass of the analysed signal.

of the values R̂j , j = 1, . . . , Npar for all parameters.
Examples of chains that are mixing well and chains
that are mixing badly, as well as their R̂ values, are
shown in Fig. 5.

The disadvantage of R̂ is that we cannot define a
hard limit below which R̂ must lie so that we will trust
the results. As with other indicators, this parameter
merely helps us to judge the quality of a set of Markov
chains and the validity of their implications.

However, if the value of R̂ is reasonably small, we
can multiply the width of the PDF (e.g. the standard

deviation or some probability range) with R̂ to esti-
mate the true accuracy, according to its design.[66]

2. Autocorrelation length

Another diagnostic that may be used to measure
how well the Markov chains are sampling is the auto-
correlation. We compute the normalised value for this
diagnostic for parameter λp and an interval m < N
as:

ρm =
1

(N−m)σ2
p

N−m∑
i=1

(λp(i)− µp) · (λp(i+m)− µp) ,

(23)

where N is the number of data points in the chain,
µp is the mean value and σ2

p the standard deviation of
the parameter λp. The autocorrelation is determined
separately for each independent Markov chain and for

each parameter λp ∈ ~λ.

As a diagnostic, we are particularly interested in
the autocorrelation length `ac, which we define as the
value of m where ρm < 0 for the first time. In order to
characterise the typical autocorrelation length for the
whole set of Markov chains (i.e., all parameters of all
independent chains) we first compute the median of

the autocorrelation lengths for all parameters λp ∈ ~λ
of each chain, which gives us the typical length for that
chain. Subsequently, we compute the median of these
(typically 5–10) median values to produce the typical
autocorrelation length for the analysis, `ac, expressed
as a number of iterations in our Markov chains.

The autocorrelation length is useful to verify the va-
lidity and efficiency of a parameter-estimation analy-
sis. First, in order to have meaningful results, we need
Markov chains that are many autocorrelation lengths
long, i.e. `ac � N . Secondly, when using correlated
update proposals (see Sect. III D 3), we need to ascer-
tain that Ncorr < `ac. And thirdly, when testing dif-
ferent methods of sampling, a smaller value for `ac

indicates more efficient sampling, or better mixing.
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FIG. 5: Examples of mixing for two different MCMC analyses. The panels show the Markov chains (parameter value
vs. iteration number) for a selection of six parameters; different colours represent different independent chains running
on the same data set. The horizontal dotted lines show the starting values of the different chains, the dashed vertical
lines show the iteration number at which each chain converges. The values of R̂ for each parameter are shown above
the panels (as R-hat). Left: Analysis with relatively good mixing (median R̂ value in all parameters ≈ 1.10). Right:

Analysis with relatively poor mixing (median R̂ value in all parameters ≈ 1.86). See Sect. IV B 1 for more details.

V. REPRESENTATION AND
INTERPRETATION OF THE RESULTS

After a parameter-estimation analysis has com-
pleted, or while the analysis is ongoing and we con-
sider a “snapshot” of the intermediate output up to
that point, we need to convert the output from our
MCMC code, i.e. the Markov chains, to a form that
can be easily interpreted. For this we use a code called
AnalyseMCMC [57]. We first determine the burn-
in length, i.e., `burn for each Markov chain, as de-
scribed in Sect. IV A. This provides us with a criterion
to judge whether the Markov chains have converged,
and hence whether the whole analysis should be ac-
cepted, or not. Secondly, for the remainder of our
analysis, we take into account the part of each Markov
chain after `burn. The data from the converged parts
of the chains are then combined and treated as a sin-
gle data set. This data set is the raw result of our
analysis; it contains the full Npar-dimensional poste-
rior probability-density function (posterior PDF).

Since it is difficult to visualise data in a parame-
ter space that has many dimensions, we typically pro-
duce one- and two-dimensional marginalised posterior
PDFs, which allow for a quick interpretation. The

two-dimensional PDFs are useful for combinations of
parameters that have strong correlations, e.g. the two
individual masses, the sky position and the binary ori-
entation.

In order to quantify our results, we typically want
to express a “best value” and an uncertainty in or
accuracy of that value in the marginalised PDFs for
each of the parameters. One choice of “best value”
and accuracy would be the median (or mean) and the
standard deviation. Alternatively, we can use proba-
bility intervals of the 1D PDFs to express both the
“best value” for each parameter (the centre of the in-
terval) and the accuracy (the width of the interval).
This is described in Sect. V A.

For 2D PDFs, in order to express the accuracy of
e.g. the sky position, we compute probability areas,
as discussed in Sect. V B. In addition, we determine
the cross-correlation matrix of the results (Sect. V C).
This is particularly useful to find for which parame-
ters the 1D accuracy determinations overestimate the
amount of uncertainty. For example, Fig. 6 displays
a 2D marginalised PDF of the two individual compo-
nent masses of a binary. When 1D accuracy estimates
are combined, the total uncertainty in these two pa-
rameters would seem to cover a large rectangle in this
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FIG. 6: A two-dimensional (2D) posterior PDF for the
component masses of a binary (the signal analysed is NS-0
described in Sect. VI B and Table III). The three different
shades/colours show the 1σ, 2σ and 3σ probability areas
as indicated at the top of the figure and determined using a
greedy-binning algorithm (see Sect. V B). The dash-dotted
(black) lines and star indicate the true parameter values of
the signal (11M� and 7M�), the dashed (red) lines show
the medians from the one-dimensional (1D) distributions.
The (red) arrows and dotted lines show the 1D 2σ (95%)
probability intervals. Judging from these intervals, the
uncertainty in this plane would amount to 4.1M2

�, but the
2D probability area indicates that the actual uncertainty
is 0.42M2

�, nearly an order of magnitude smaller. This
difference is extreme, because the two component masses
are strongly correlated, with a normalised correlation of
σM1,M2 = −0.99 (see Sect. V C).

figure, whereas in reality the PDF is restricted to a
relatively narrow, sickle-shaped area.

Finally, the Bayes factor expresses how well the as-
sumed model matches the data set. This is a use-
ful parameter to compare analyses that use different
models, for example a model that allows for spinning
objects, a model that does not and a model that allows
for noise only, and determine which model describes
the data set better, and to what extent. We describe
the computation of the Bayes factor from MCMC out-
put in Sect. V D.

A. 1D marginalised PDFs and probability
intervals

Marginalising the full Npar-dimensional PDF over

all parameters ~λ but one (λp) in order to obtain the 1D
marginalised PDF, is trivial for Markov-chain Monte
Carlo output. In fact, for each iteration, our code
stores the values of the parameters at which the chain
resides at that iteration, and we can simply consider
only the output for one of these parameters.

1. Best value and accuracy

In order to compare results from different analyses,
it is convenient to express the outcome of the param-
eter estimation in just a few numbers — in particular
a “best value” and uncertainty in that value for each
parameter. It should be noted here that by describing
a 1D marginalised PDF by only two numbers, some of
the details of the PDF are inevitably lost (just as de-
tails of the full n-dimensional PDF are lost by express-
ing it as n 1D marginalised PDFs). However, while
keeping this in mind, reducing the results to only a
few numbers gives us a better quantitative “feel” of
the results.

There are two choices of parameters to express the
“best value” and accuracy for each parameter that we
regularly use. One choice is the the median of the 1D
marginalised distribution for the “best value” and the
standard deviation for the accuracy. Alternatively,
we can use the centre of the 1D probability interval
for each parameter as a measure of the “best value”
for that parameter and the width of that interval as
the accuracy with which the parameter was estimated.
The expressions for both choices are determined by
sorting the N data points of λp to increasing value.

The median µ(λp) is determined in the usual way,

by picking the value of the (N+1
2 )-th number in this

sorted list (λp(
N+1

2 )) if N is odd, or the arithmetic

mean of λp(
N
2 ) and λp(

N
2 +1) if N is even. The median

is a good statistic for the “best estimate” for the value
of λp and is less affected by distant outliers than is the
mean.

In order to express the uncertainty in the parame-
ter estimation, we determine a probability range for
each parameter λp. As a default, we consider the
95.4%-probability interval (or “2σ” interval), defined
as the narrowest range that contains 95.4% of our
data points. This range can be obtained easily from
the sorted list of data points, by considering the dis-
tance in coordinate space λp(N2) − λp(N1) between
the points N1 = 1 and N2 = 0.954 · N , N1 = 2
and N2 = 0.954 · N + 1, etc., and finding the pair
of N1, N2 that give the smallest difference. The prob-
ability interval thus obtained can be used to express
the uncertainty around the “best value” determined
by the median, or can even produce both by quoting
the central value of the interval (λp(N2)− λp(N1))/2
as the “best value”. For periodic parameters, such as
the phases or right ascension, we test all possibilities
wrapping around the value 2π (π for the polarisation
angle ψ), and the central value of the probability in-
terval is used to centre the 1D and 2D histograms (see
below).

2. Histograms of 1D PDFs

A marginalised 1D PDF is constructed by binning
the data points of the parameter λp and creating a
histogram. Such a histogram has the value of the pa-
rameter λp on its horizontal axis (see Fig. 7 for an
example) and, since the MCMC samples according to
the posterior, a value that is proportional to the pos-
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FIG. 7: Example results from the MCMC analysis of a simulated signal from an inspiralling BH-BH binary with
masses of 11M� and 7M�, and spins of 0.9 and 0.7 respectively (signal HS-2, described in Sect. VI B). The grey-shaded
histograms represent the 1D marginalised PDFs for each of the 15 parameters that describe the source binary. Vertical
dash-dotted (black) lines indicate the parameter values of the injected signal, vertical dashed (red) lines show the median
in each parameter (“best parameter value”) and the two vertical dotted (red) lines indicate the 95% (“2σ”) probability
range (“uncertainty in the parameter value”), the value of which is indicated at the top of each panel.

terior probability density on the vertical axis. The
number of bins can be chosen manually, but we find
that in general good results are obtained when deter-
mining the number of bins Nbin from the number of
data points N >∼ 100 using

Nbin = 10×10 logN. (24)

Typically, we use around 50 bins for our 1D his-
tograms.

Although the most important quantitative results
can be derived without creating such a histogram, it
provides important information at a glance, such as
whether a distribution is multimodal or not, whether
the distribution ‘rails’ against the prior boundaries
and the general quality of the analysis (chains that
get ‘stuck’ at a certain parameter value produce a nar-
row peak, independent Markov chains that do not mix
well (see Sect. IV B) produce many separate peaks).
In many cases, we apply minimal smoothing to the
1D histograms before we present them, sufficient to
smear out small-scale features in the PDFs, but not
so much as to change the qualitative interpretation of
the PDFs. This smoothing does not affect our quan-
titative results either, since they are determined inde-
pendently.

B. 2D marginalised PDFs and probability areas

Some combinations of parameters are heavily corre-
lated, for example the chirp mass and spin magnitude
(see Sect. V C), or are useful to present together, such
as the right ascension and declination of a source in a
sky map. For such cases, we compute two-dimensional
marginalised posterior PDFs in order to determine the
“best value” or accuracy of parameter estimation, or
to visualise the results in a figure. The main difference
between the one- and two-dimensional analyses is that
in the latter case, we cannot create sorted lists of data
points and we need to bin our data first. Hence, the
quantitative results obtained for the 2D case depend
on the way the bins are constructed, although experi-
ence shows that this dependence is generally weak for
reasonable choices of the number of bins used. Never-
theless, we usually refrain from determining “best val-
ues” from 2D results, as 1D medians are much more
robust and reliable.

As in the 1D case, marginalisation of the full Npar-
dimensional PDF over all but two parameters is trivial
and can be done by considering only the MCMC out-
put for the two selected parameters. The number of
bins in each direction can be determined manually, or
automatically from the number of data points, using
the prescription from the 1D case in Eq. 24. When
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producing a rectangular figure, we typically increase
the number of bins on the longer axis in order to keep
the 2D bins, or pixels, square. Hence, we typically
use roughly 50× 50 pixels, although the precise num-
ber may depend on the modality of or the strength of
correlations in the distribution.

After the data have been binned, we use a so-called
greedy algorithm to define the probability areas, the
2D equivalent of the probability intervals defined in
Sect. V A. Using, as an example, the 95.4% probabil-
ity area, we select the bin that contains the largest
number of data points, then the bin with the second-
largest number of data points, and so forth. After
each of these subsequent pixels are selected, we add
up their data points and compute the fraction of the
total number of data points N that is contained in
all selected bins so far. Once this fraction reaches
0.954 · N , we stop selecting bins. By adding up the
area that all these pixels cover, we find the probabil-
ity area we were looking for: the smallest area that
contains a certain fraction of our data points.

Experience shows that the greedy algorithm gener-
ally provides nice coherent areas, even though these
areas may not be connected (see Fig. 8). In fact, this
is exactly what we need — for the general case of sky
localisation with three non-colocated interferometers,
for example, we expect two areas in the sky where
the source may be. The only slight disadvantage of
this method lies in quantifying the probability areas,
which depends on the choice of binning. In fact, the
area found generally decreases slowly as the pixel size
decreases, i.e., as the number of pixels increases. Con-
sider, for example, a sky map with N data points. At
one extreme, we could cover the sky with only one
pixel, which would evidently need to be selected in
order to cover the majority of our data points, and
the probability area found would be that of the whole
sky or 4π steradians. At the other extreme, we could
cover the sky with an infinite number of (infinitesi-
mally small) pixels. In that case, the total area found
would be N times an infinitesimally small area, or zero
steradians.

C. Cross-correlations between the parameters

We compute the normalised cross-correlations be-
tween parameters λp and λq as:

σp,q =
1

N−1

N∑
i=1

λp(i)− µp
σp

· λq(i)− µq
σq

, (25)

where i is the Markov-chain iteration number, N is the
total number of iterations and µp and σp are the mean
and variance of the parameter λp, respectively. In this
definition, −1 ≤ σp,q ≤ 1, where |σp,q| ≈ 1 indicates a
strong (anti)correlation, and σp,q ≈ 0 indicates a weak
correlation between the two parameters.

The correlations provide important information for
the interpretation of the one-dimensional accuracies
for strongly correlated parameters (see the introduc-
tion of Sect. V and Figures 6 and 9) and give us a
qualitative idea of some of the behaviour in the sam-
pling efficiency of our Markov chains. In some cases,

these correlations are predictable and can help us to
design specialised update proposals for certain combi-
nations of parameters. Examples of parameters that
often have strong correlations are the chirp mass with
the mass ratio, spin magnitude and spin tilt, the dis-
tance with the inclination and the time of coalescence
or distance with either of the two sky coordinates. In
many cases, the strength of the correlations depends
on the exact details of the signal.

D. Bayes factor

Although Markov-chain Monte Carlo is primarily
concerned with estimating posterior PDFs, unlike
other Bayesian inference techniques that are designed
to compute evidences, such as nested sampling [e.g.
58, 59], the output from SPINspiral can also be used
for evidence computation.

When we consider our definition of Bayes’ theorem
in Eq. 8 and marginalise over the whole parameter set
~λ for a specific model Mm, we obtain

p(Mm|d) =
p(Mm) p(d|Mm)

p(d)
(26)

and we can compare two models Mm and Mn by com-
puting the odds ratio:

Om,n =
p(Mm|d)

p(Mn|d)
=
p(Mm) p(d|Mm)

p(Mn) p(d|Mn)

=
p(Mm)

p(Mn)
Bm,n, (27)

where

Bm,n =
p(d|Mm)

p(d|Mn)
(28)

is the Bayes factor of the two models, given by the
ratio of the evidences for each model.

We follow Raymond et al. [25] [and hence 60] in
computing an approximation for the evidence

p(d|Mm) ≈ N Vt

[
N∑
i=1

1

p(~λi|Mm) p(d|~λi,Mm)

]−1

,

(29)
which is the harmonic mean of the posterior values
sampled by the MCMC, multiplied with N , the num-
ber of data points in our Markov chains, and Vt, an
approximation of the volume of the whole parameter
space given by

Vt ≈
N∑
i=1

V~λi =

N∑
i=1

αp

p(~λi|Mm) p(d|~λi,Mm)
. (30)

The factor αp is a proportionality constant.
This allows us to compute the Bayes factor between

models Mm and Mn using Eq.28 as

Bm,n =
Nm
Nn

∑Nn
k=1 p(

~λi|Mn) p(d|~λi,Mn)∑Nm
k=1 p(

~λi|Mm) p(d|~λi,Mm)

=
Nm
Nn

∑Nn
k=1 Ln(~λk)∑Nm
k=1 Lm(~λk)

(31)
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FIG. 8: Two-dimensional posterior PDF for the sky position of a binary inspiral with two spinning black holes (signal
HS-2, described in Sect. VI B). Because the data from three non-colocated detectors were used for the analysis, the PDF
shows possible sky positions at the true location of the source (indicated by the symbol) and at a location that is the
true position, mirrored in the plane spanned by the three detectors. Because of the extra information contained in the
waveform due to the spins, the mirror location has a much lower probability density and is almost ruled out. The PDF
is mapped using a Mollweide projection.

FIG. 9: Two-dimensional posterior PDF for the lumi-
nosity distance and inclination sky position of a binary
inspiral with two spinning black holes (signal HS-2, de-
scribed in Sect. VI B). Because of the precession induced
by the black-hole spins, extra information is available to
constrain the inclination. In this example, virtually all
probability density is at ι < 90◦. The true parameter val-
ues of the signal are indicated by the black dash-dotted
lines and the symbol. As may be expected, the distance
and inclination are strongly correlated, with a normalised
correlation of σdL,ι = −0.78 (see Sect. V C).

where the last step uses the proportionality from
Eq. 8. Hence, to compute the Bayes factor or odds
ratio from our MCMC output, we need to compute
the mean of all the likelihood values from the T = 1

Markov chains of each of our MCMC runs using the
models Mm and Mn.

Note that the harmonic mean in Eq. 29, and hence
the value of the Bayes factor, is very sensitive to data
points with a low posterior, a region of the parameter
space which an MCMC code is not designed to sample
well. Hence, the value of the Bayes factor depends
strongly on the quality of our sampling and is typically
overestimated somewhat.

VI. EXAMPLE MCMC SIMULATIONS

A. Sampling efficiency

In this section we compare the MCMC sampling ef-
ficiency for the parameter-estimation analyses of three
different simulated data sets, each containing a differ-
ent CBC signal, using seven different combinations of
settings for the MCMC code. The results of this ex-
ercise are shown in Table II.

The left-hand side of the table shows the combi-
nation of sampling techniques which are switched on
or off for each of the seven different analyses. These
features, described in Sections III D and III E, are:
adaptive updates (code settings, column 2), correlated
update proposals (column 3), parallel tempering (col-
umn 4) and sinusoidal temperatures when using paral-
lel tempering (code settings, column 5). The top part
of the table shows the effect of gradually switching on
features, the bottom part shows the effect of alternat-
ingly switching on all features but one (repeating two
lines from the top part).

We measure the efficiency of the sampling for each
of the three signals in the next three parts of Ta-
ble II. We use four indicators to quantify the quality
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TABLE II: Sampling efficiencies for the analyses of three different signals, using a variety of code settings (see the text
in Sect.VI A).

Code settings: Results signal 1: Results signal 2: Results signal 3:

Sim. adapt. corr. par. sin. Nch `burn `ac R̂ Nch `burn `ac R̂ Nch `burn `ac R̂
nr. upd. prop. temp. temp. (104) (104) (104) (104) (104) (104)

1 off off off — 5 30 31 2.08 5 19.3 17 1.42 5 9.1 17 1.98

2 on off off — 1 — 24 — 5 15.5 18 1.57 5 3.6 13 1.06

3 on on off — 1 — 16 — 5 2.1 18 2.05 4 2.0 18 1.42

4 on on on off 5 2.1 21 1.49 5 0.9 10 1.03 5 0.7 10 1.10

5 on on on on 5 3.3 19 1.19 5 1.9 10 1.05 5 1.1 11 1.05

6 off on on on 5 4.8 16 1.22 5 0.9 8.0 1.07 5 0.8 8.0 1.04

7 on off on on 5 4.9 13 1.61 5 1.1 8.0 1.05 5 2.3 3.0 1.05

(3) on on off — 1 — 16 — 5 2.1 18 2.05 4 2.0 18 1.42

(4) on on on off 5 2.1 21 1.49 5 0.9 10 1.03 5 0.7 10 1.10

of sampling: the number of converged chains (Nch;
see Sect. IV A), the length of the burn-in (`burn; see
Sect. IV A), the autocorrelation length of the chains
(`ac; Sect. IV B 2) and the potential scale-reduction

factor (R̂; Sect. IV B 1).
Signal 1 is that of a 10 + 1.4M� BH-NS system

with spin for the BH only (aspin1 = 0.5), using a
1.5-pN waveform with simple precession (Sect. II B 1),
and 7 s of data. Signal 2 comes from a 11 + 7M�
BH-BH inspiral with spin for the most massive BH
(aspin1 = 0.5), also using a 1.5-pN waveform and sim-
ple precession, but analysing 3 s of data. Finally, sig-
nal 3 is generated by the inspiral of a 10 + 1.4M�
BH-NS binary without spins, using a 2.0-pN Gener-
atePPN waveform (Sect. II B 3) and 7 s of data. For
all analyses, we use the data from one detector and
Gaussian, simulated noise. Each of the three signals
is injected with an SNR of 15 by scaling the source’s
distance. For each of the different analyses of a given
signal, five independent MCMC chains have been com-
puted for 106 iterations each, and the starting values
for the MCMC chains are identical between the dif-
ferent analyses.

The results in Table II indicate the following:

Adaptive update proposals have a mildly nega-
tive effect on the autocorrelation lengths of the
chains (compare lines 1 to 2, and 6 to 5 in the
Table), while being neutral to the other indica-
tors. The effect of adaptive proposals seems to
be more favourable when parallel tempering is
not used. This seems to be a reason not to use
them, especially when using parallel tempering.

Correlated update proposals have a negative ef-
fect on the autocorrelation, but mildly positive
effects on the burn-in length and the mixing (R̂;
in the Table, compare line 2 to 3 and 7 to 5).
Since the method may be a threat to the ergod-
icity of the chains, and little sampling efficiency
is gained from it, we conclude that it can be
used in the burn-in to optimise the convergence
of the chains, but should preferably not be used
afterwards.[67]

Parallel tempering has a strongly positive effect on
the sampling efficiency according to all four in-

dicators (lines 3 and 4 in the Table). The ab-
sence of parallel tempering causes fewer chains
to converge in some cases, and even causes some
analyses to fail to converge at all. However, we
have not taken into account that an analysis us-
ing parallel tempering needs about five times
as much CPU time, since typically five differ-
ent parallel chains, with a different temperature
each, are computed. While it is not straightfor-
ward to compensate for this in the comparison
(especially if some MCMC chains do not con-
verge at all), we point out that the parallel tem-
pering is a natural point where an MCMC code
can be parallelised, by computing the waveforms
needed for the jump proposals on different CPUs
for chains of different temperatures.[68] In cases
where the clock time to obtain a result is more
important than CPU time, parallel tempering
should be used in a parallelised code.

Sinusoidal temperatures of the T > 1 chains in
parallel tempering hamper the convergence dur-
ing the burn-in appreciably, have a neutral effect
on the autocorrelation and improve the mixing
efficiency noticeably (compare line 4 to 5 in the
Table). Hence, they should be used after the
burn-in.[69]

In conclusion, there seems to be no need to use
adaptive update proposals, correlated update propos-
als should only be used in the burn-in, parallel temper-
ing has a positive effect, and sinusoidal temperatures
should be used after the burn-in.

B. Accuracy of parameter estimation

1. Description of the signals

In order to give the reader an impression of the ac-
curacies that can be achieved in extracting astrophys-
ical parameters from GW inspiral signals as measured
by LIGO and Virgo, and of the effect of the presence
of spins on this accuracy, we here present the analyses
of three more simulated example signals. All three sig-
nals are computed for the inspiral of a BH-BH system
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(for example accuracies for BH-NS inspirals, see van
der Sluys et al. [22]), with masses of M1 = 11.0M�
and M2 = 7.0M� (M≈ 7.6M�, η ≈ 0.238). The dif-
ferences are in the spin magnitude; the first signal has
no spins (NS; aspin1 = 0.0, aspin2 = 0.0); the second
signal has low spins (LS; aspin1 = 0.2, aspin2 = 0.1);
and the third signal has high spins (HS; aspin1 = 0.9,
aspin2 = 0.7). The tilts between the spin and orbital
vectors are θspin1 = 20◦ and θspin2 = 10◦, and the dis-
tances of the three sources (53.3 Mpc for NS, 59.8 Mpc
for LS and 74.5 Mpc for HS) are chosen such that the
total signal SNR is always 15.0. We analyse 4 s of
data from the 4-km LIGO detectors in Hanford and
Livingston, and the 3-km Virgo detector. The data
sets consist of a simulated signal injected into Gaus-
sian noise with the spectra of Initial LIGO and Virgo.
Both for the signal injection and for the MCMC anal-
ysis, we use the SpinTaylor 3.5-pN double-spin wave-
form (see Sect. II B 2).

2. Description of the analyses

Each signal is analysed twice — once while allowing
for two spins in the MCMC (using 15 parameters; NS-
2, LS-2 and HS-2) and once assuming there is no spin
in the black holes (aspin1,2 = 0, using 9 parameters;
NS-0, LS-0 and HS-0). Each analysis consisted of nine
independent Markov chains when the spins were fitted
for and five such chains for the cases where the spin
was fixed. In each case, each independent chain used
five parallel-tempering chains with a maximum tem-
perature of 40 and sinusoidal temperature variations.
The results of the analyses where spin is allowed for
can be found in the form of 1D marginalised posterior
PDFs in Figure 7 (HS-2). In Figure 11 (HS-0 vs. HS-
2) we compare the 1D posterior PDFs for a selection
of parameters between the cases where spins are fit for
and those where they are not. A selection of 2D poste-
rior PDFs can be found in Figures 6 (M1−M2 for NS-
0), 8 (sky map for HS-2) and 9 (distance–inclination
for HS-2). The accuracies for all six analyses are sum-
marised in Table III, for all binary parameters, except
right ascension and declination, which are combined
in the 2D position. The accuracies for the individual
mass components have been added; these values were
computed from the data for the chirp mass M and
mass ratio η.

3. Discussion of the results

a. Masses When looking at the results of the
analyses that fit for spins (the first three lines), Ta-
ble III shows that the uncertainties for the chirp mass
increase when the spin increases. The mass ratio, η,
shows the opposite effect — its accuracy increases
with increasing spin. The latter effect is slightly
stronger when considering the individual masses; they
are determined more accurately for the case where
spins are stronger. This effect is opposite to that of
the case of a BH-NS signal found in an earlier paper,
where the determination of the chirp mass becomes

more accurate for a more rapidly spinning black hole
[22, note that 90%-probability ranges are used in that
paper]. The BH-NS analyses in that study have a
much more accurate chirp-mass determination (2.6%
for signals with a non-spinning BH, down to 0.6–0.9%
for the signals with spin) and a less accurate determi-
nation of the mass ratio (0.13 for non-spinning signals,
0.04–0.08 for signals with spin). The combination of
these trends in chirp mass and mass ratio translate
into a somewhat better determination of the individ-
ual masses for the case of strong spins. The estima-
tions of the component masses for the BH-BH systems
are comparable to, and perhaps slightly less accurate
than in the case of the BH-NS systems.

While the SNRs of the signals are comparable be-
tween that study (SNR=17) and the current one
(SNR=15), the main differences, which are probably
responsible for the differences in accuracies, are the
mass ratios (q ≈ 0.14; η ≈ 0.108 vs. q ≈ 0.64; η ≈
0.238 here) and the (related) fact that the binary in-
spirals in the current study have two significant spins
as opposed to only one (for the BH in the BH-NS in-
spirals). These two facts are related since the steeper
mass ratio in the BH-NS system ensures that the NS
spin would not affect the results strongly, if at all,
even if the signals in van der Sluys et al. [22] had had
a non-zero NS spin. On the other hand, the parameter
estimation in the earlier study did not allow for a finite
spin for the NS, restricting the number of parameters
to 12. Allowing for a non-zero NS spin might have
increased the uncertainties for the chirp mass in the
earlier study, as it does in the current one (compare
the top half of Table III to the bottom half).

b. Position and orientation The behaviour of the
uncertainties in distance in Table III is similar to that
of the individual masses: while they are relatively
large for the case with a non-spinning BH and slightly
less so for low-spin case, the distance for the sig-
nal with high spins is significantly better determined.
This is connected to the diminished probability for one
of the two possible sky locations of the source; timing
alone allows for two solutions in the sky position when
observing with three (non-colocated) detectors: the
true position and that position, mirrored in the plane
defined by the three detectors (see Fig. 8). However,
the presence of spin causes precession of the binary
orbit, which changes the inclination and polarisation
angle of the source during the observation, excluding
a significant fraction of the possible phase space in
the binary orientation, sky position, arrival time and
distance, which are strongly correlated (see Fig. 12).
For signals without spin, or with low spin, PDFs are
therefore often bimodal in these parameters — a bi-
modality which can be lifted by the presence of spin
and the resulting orbital precession. This is illustrated
in Fig. 10, where 1D PDFs for the LS-2 and HS-2 anal-
yses are compared. The secondary mode has almost
completely disappeared in the latter signal. Interest-
ingly, while for the sky location and time of arrival
the main difference is the disappearance of the second
mode, for the distance and inclination the remaining
mode also seems to widen. This is probably due to
the difference in source distance for the two signals
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TABLE III: Parameter-estimation accuracies (95%) for the example analyses described in Sect. VI B 3.

ID dL M η M1 M2 dL tc as1 θs1 ϕs1 as2 θs2 ϕs2 Pos. ψ ι ϕorb

(Mpc) (%) (%) (%) (%) (ms) (◦) (◦) (◦) (◦) (◦2) (◦) (◦) (◦)

NS-2 53.3 4.1 0.064 51 45 125 32 0.45 145 337 0.91 142 323 43.9 132 76 334

LS-2 59.8 4.7 0.058 51 43 116 32 0.57 141 334 0.89 143 320 57.8 115 51 335

HS-2 74.5 9.9 0.041 41 40 79 5.2 0.86 118 326 0.57 115 291 46.9 165 64 341

NS-0 53.3 2.4 0.047 33 34 134 32 – – – – – – 32.6 141 85 333

LS-0 59.8 2.0 0.039 34 34 122 32 – – – – – – 40.0 114 60 327

HS-0 74.5 3.7 0.069 54 54 135 32 – – – – – – 54.9 158 94 342

FIG. 10: A comparison of one-dimensional marginalised posterior PDFs for the signals with low spins (LS-2; upward
hashes, red) and the signal with high spins (HS-2; downward hashes, blue), fitting for both spins, showing selected
position and orientation parameters. The PDFs are normalised in area, hence narrower PDFs have higher peaks. The
dashed vertical lines indicate the parameter values of the injected signal (two different values for the distance). For
most parameters, the LS-2 PDFs show two modes, which are reduced to one for the HS-2 case. See Sect. VI B 3 for a
discussion.

(applied in order to normalise the SNR). In the case
of the distance, the relative uncertainty still drops sig-
nificantly, while for the inclination, where the relative
accuracy has little meaning, the absolute accuracy is
quoted in Table III, which increases.

c. Spin Finally, the accuracies in the spin param-
eters show erratic behaviour; while the uncertainty in
aspin1 grows with the strength of the spin, that in
aspin2 decreases. This may not be easy to explain, as
the spins are correlated to the masses and the effects of
the mass-spin system are quite complex and should be
considered as a whole. This calls for a more elaborate
study than is the scope of the current paper. The an-
gle between spin and orbit is virtually undetermined
for zero or small spin, as one would expect. While for
larger spins these parameters are more constrained,
they still span more than half of their parameter space.
This behaviour in spin accuracies is in contrast to the
findings for BH-NS inspirals, where the (absolute) ac-
curacy with which the spin magnitude and tilt can
be measured increases with increasing spin [22]. The
reasons for this contrast are probably that, firstly, the
BH-NS system is simpler in that only the BH, which is
much more massive than the NS, has spin. Secondly,
the analysis in that study is simplified, in that it only
allows for a single spinning binary component (see the
next section for possible consequences).

d. Fitting for spin vs. assuming zero spin When
comparing the top half of Table III, where finite spins
are allowed in the parameter estimation of the three
signals, to the bottom half of that table, where the
spins are assumed to be zero, one finds that the ac-

curacy is better for the latter case, for most param-
eters (notable exceptions are the distance and incli-
nation, due to the fact that the secondary modes in
position, orientation and arrival time described above
do not completely disappear). For the signals from
BHs without spin, fixing the spin parameters to their
true values simply leads to more accurate masses and
sky position (compare the line NS-2 to NS-0), which
can be intuitively understood by the fact that con-
straining one parameter by using prior information
will lead to an increased accuracy for correlated pa-
rameters. This effect is of course misleading, as in re-
ality such (strong) prior information will not be avail-
able. Hence, the NS-2 result is more realistic.

While for the NS-i models assuming zero spins ac-
tually fixes those parameters to their true values, for
the signals with spins (LS-i and HS-i) this is no longer
true. Instead, they are fixed to the wrong values. The
consequences are therefore more dramatic. Although
Table III shows a much increased accuracy for the
chirp mass (though interestingly not for most other
parameters, due to the perseverance of the secondary
modes described earlier), Fig. 11 shows that while the
mode of the chirp-mass PDF is indeed narrower, it
is also offset significantly from the true value (the
dashed vertical line). This indicates clearly that while
allowing for spins in the parameter-estimation analy-
sis is computationally costly — because the dimen-
sionality of the parameter space is much larger and
the parameter space itself is more structured, making
it more difficult to efficiently sample it — it is also
necessary to obtain valid results. One of the basic as-
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FIG. 11: A comparison of one-dimensional marginalised posterior PDFs for the signal with high spins, using an analysis
which assumes that there are no spins (HS-0; downward hashes, blue), and an analysis which allows for spins (HS-2;
upward hashes, red), for selected parameters. The PDFs are normalised in area, hence narrower PDFs have higher peaks.
The dashed vertical lines indicate the parameter values of the injected signal. The most remarkable difference between
the two sets of results is in the chirp mass, where the PDF for zero spin apparently shows a much more accurate result.
However, when comparing to the true parameter value, that PDF is seen to be completely offset from the true value.
See Sect. VI B 3 for a discussion.

sumptions in MCMC is that the model used is perfect.
Performing parameter estimation with a model that
does not fit for spin appears to strongly violate this as-
sumption, resulting in seemingly good results (nicely
mixing, converging chains, beautiful PDFs) which are
in fact completely biased.

C. Correlations between parameters

Two examples, for the analyses LS-2 and HS-2, of
cross-correlation matrices are shown in Fig. 12. The
parameter sets have been divided into two subsets by
the dotted lines, showing mass and spin parameters on
one side and time of arrival, position and orientation
parameters on the other. We will consider the four
quadrants thus formed separately.

The top-left quadrant shows the mutual correla-
tions between masses and spins, and shows that these
correlations are typically stronger when more spin is
present in the binary (lower-left triangle). This may
explain why the determination of the chirp mass is
less accurate when more spin is present; a strong cor-
relation between two parameters allows the values of
both parameters to move away from the true values
— as long as they do so together, the match between
model and data will still be reasonable — thus in-
creasing the uncertainty in both parameters. Also,
this may well be one of the reasons why MCMC sam-
pling when analysing a signal with spins present is
less efficient than for a signal without spins; the chirp
mass is the dominant parameter and in the HS-2 case
this parameter is more strongly correlated with all but
two of the 14 other parameters when compared to the
LS-2 analysis. Interestingly, one of the exceptions to
this is the magnitude of spin 2.

The top-right and bottom-left blocks in the matrix
show the correlations between mass/spin parameters
on the one hand and the position/orientation param-
eters on the other. The most noticeable difference
between the two cases is in the correlations between
the mass parameters and the rest, which are signif-
icantly stronger for the HS-2 analysis than for LS-2.
This may be due to the fact that one of the two modes
in the position and orientation parameters disappears
for the case with stronger spins (see below).

Finally, the lower-right quadrant shows the correla-
tions amongst the position and orientation parameters
(including the arrival time). For these parameters, the
(near-)disappearance of the second mode in sky posi-
tion, arrival time, inclination and distance (see Fig. 10
and paragraph VI B 3 b) probably plays an important
role; while the second mode is there, the chains regu-
larly jump between the two locations, and the strong
correlations between especially the first five of these
parameters in the matrix are likely to be a conse-
quence of that. When the secondary mode (nearly)
disappears, in the case of stronger spins, the jumping
between the two modes (nearly) seizes, and the corre-
lations become much weaker. The correlation between
the orbital phase ϕc and polarisation angle ψ is due
to their physical similarity; for a face-on binary with-
out spins, these two parameters are in fact identical
and hence fully degenerate [61]. For the case where
the binary is not face-on, there may still be a strong
correlation, which is expected to diminish when spin
is present, due to the precession.
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FIG. 12: Cross-correlation matrices for all 15 parameters from the analyses LS-2 (upper-right triangle; blue) and HS-2
(lower-left triangle; red). The values printed are the normalised cross-correlations as defined in Eq. 25. To guide the eye,
stronger (anti)correlations have a darker background, while weaker correlations (σp,q < 0.25) have an increasingly light
font — hence “empty” entries have σp,q ∼ 0.0. A rough division has been made between mass and spin parameters on
the one hand, and position and orientation parameters on the other by the dotted lines. See Sect. VI C for a discussion.

VII. SUMMARY AND DISCUSSION

In this technical paper, we have provided a com-
plete description of a method of parameter estima-
tion (PE) on gravitational-wave (GW) signals, after
their detection by the LIGO-Virgo compact-binary-
coalescence detection pipeline. Section II details the
data filtering and windowing, the PSD generation, the
computation of waveform templates, their injection
into the noise and the signal characteristics that we
use. In Section III we present an implementation of
Markov-chain Monte Carlo (MCMC), i.e. the way we
start and update the chains, including parallel tem-
pering and some experimental features. Section IV
deals with one of the major issues in MCMC, that of
determining whether the chains have converged and
hence whether the results can be trusted. In Sec-
tion V we describe how the results can be presented,
using one- and two-dimensional posterior probability-
density functions (PDFs), correlations and Bayes fac-
tors.

In Section VI all the above is brought together for
two example applications. First, we assess the effect
of the experimental MCMC features described in Sec-
tion III on the sampling efficiency of the MCMC in
Section VI A. We find that parallel tempering always
improves the sampling efficiency, and that using sinu-
soidal temperatures there may help after the burn-in

phase. Using correlated update proposals is tricky
and should not be used after the burn in. Adaptive
update proposals seem to harm the MCMC sampling
efficiency and should not be used. The second appli-
cation is provided in Sections VI B and VI C, where we
analyse a few example GW data sets containing inspi-
ral signals of double black holes with typical SNRs.
We find accuracies of 2–10 percent in the chirp mass,
35–55% in the individual masses, ∼ 100% in the dis-
tance and 30–60◦2 in the sky position. While we can-
not determine the black hole spins very accurately,
our results can distinguish between weak, intermedi-
ate and strong spin. We conclude that the presence
of spin in the system on the one hand implies addi-
tional information in the signal, through the preces-
sion of the binary orbit and thus a modulation of the
GW signal, while on the other hand it may severely
hamper the efficiency of the PE, due to the larger di-
mensionality of the parameter space, and the presence
of stronger correlations between the parameters. De-
spite the problems the spin effects may cause, we also
show in Section VI B that if the effects of spins are
not taken into account in the PE while present in the
binary and GW signal, the results can be strongly bi-
ased and may fail to recover even the most important
parameter describing the signal, the chirp mass.

SPINspiral was an early implementation of
MCMC for LIGO/Virgo parameter estimation, and
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the first to allow for spins [22]. The code allowed us to
learn to develop the techniques needed to perform PE,
in particular in the complex multi-dimensional param-
eter space that is required to describe signals which
include spin and orbital precession effects. While this
code was developed, other codes were already mature,
such as the MCMC PE code followupMCMC for bi-
nary inspirals without spin [18, 50], or being developed

in parallel, like the nested sampling code inspNest for
Bayesian model selection [59]. These codes have now
been integrated in a Bayesian framework in the soft-
ware package LALInference, which is part of LAL-
Suite [31]. LALInference is currently the preferred
software to do Bayesian analysis on gravitational-wave
signals detected by LIGO and Virgo [62].
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[52] Y. F. Atchadé and J. S. Rosenthal, Bernoulli 11, 815

(2005).
[53] K. Hukushima and K. Nemoto, Journal of the Phys-

ical Society of Japan 65, 1604 (1996), arXiv:cond-
mat/9512035.

[54] U. Hansmann, Chemical Physics Letters 281, 140
(1997), arXiv:physics/9710041.

[55] A. Gelman and D. B. Rubin, Stat. Sciences 7, 457
(1992).

[56] P. Brooks and A. Gelman, Journal of Comp. & Graph.
Stat. 7, 434 (1998).

[57] AnalyseMCMC, URL http://analysemcmc.sf.

net.
[58] J. Skilling, Bayesian Anal. 1, 833 (2006), ISSN 1931-

6690.
[59] J. Veitch and A. Vecchio, Classical and Quantum

Gravity 25, 184010 (2008), 0807.4483.
[60] M. A. Newton and A. E. Raftery, Journal of the

Royal Statistical Society. Series B (Methodological)
56, 3 (1994), ISSN 00359246, URL http://www.

jstor.org/stable/2346025.
[61] S. Shah, M. van der Sluys, and G. Nelemans, A&A

544, A153 (2012), 1207.6770.
[62] J. Aasi, J. Abadie, B. P. Abbott, and al., in prepara-

tion (2013).
[63] As in any other iteration, the proposed starting value

must lie within the prior range in order to be accepted
[64] See for example Fig. 6, where large jump proposals

will typically only be accepted if they are oriented
along the crescent.

[65] Actually, the order is not important.
[66] Even though this would implicitly assume, possibly

incorrectly, that the expansion from the PDF found
to the true PDF would be symmetric around e.g. the
median.

[67] However, this would involve a pre-determined burn-
in length, separate from the automatically, a posteri-
ori, determined one described in Section IV A. Useful
lengths for this burn in can be learnt from experi-
ence and their data should always be discarded in the
analysis.

[68] Even if a single chain (without parallel tempering)
running five times longer would yield a similar result,
it would require the same amount of CPU time but
five times as much clock time, which may be unde-
sired.

[69] Again, this would be a pre-determined burn in, dif-
ferent from the method described in Sect. IV A.

http://link.aps.org/doi/10.1103/PhysRevD.76.124038
http://link.aps.org/doi/10.1103/PhysRevD.79.084010
http://link.aps.org/doi/10.1103/PhysRevD.79.084010
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution
http://link.aip.org/link/?JCP/21/1087/1
http://link.aip.org/link/?JCP/21/1087/1
http://analysemcmc.sf.net
http://analysemcmc.sf.net
http://www.jstor.org/stable/2346025
http://www.jstor.org/stable/2346025

	I Introduction
	II Data and signal
	A Data handling
	1 Data reading
	2 Software injections of waveforms
	3 Filtering and downsampling
	4 Windowing and Fourier transformation
	5 PSD generation

	B Waveforms
	1 Apostolatos, 1.5-pN, single-spin waveform
	2 SpinTaylor, 3.5-pN, double-spin waveform
	3 GeneratePPN, 3.5-pN, no-spin waveform
	4 PhenSpin, 3.5-pN, phenomenological double-spin waveform
	5 Frequency cut-offs and tapering
	6 Scaling injection signal-to-noise ratio

	C Signal characteristics
	1 Overlap
	2 Likelihood
	3 Signal-to-noise ratio


	III Implementation of MCMC
	A Choice of MCMC parameters
	B Prior distributions
	C Starting values for the Markov chains
	D Update proposals
	1 Adaptation
	2 Uncorrelated proposals
	3 Correlated update proposals

	E Parallel tempering
	1 Setting up a temperature ladder
	2 Sinusoidal temperatures

	F Thinning of the Markov chains

	IV Verification of MCMC results
	A Determining burn-in length and convergence from the maximum likelihood
	B Determining convergence from the sampling quality
	1 Potential scale-reduction (mixing) factor 
	2 Autocorrelation length


	V Representation and interpretation of the results
	A 1D marginalised PDFs and probability intervals
	1 Best value and accuracy
	2 Histograms of 1D PDFs

	B 2D marginalised PDFs and probability areas
	C Cross-correlations between the parameters
	D Bayes factor

	VI Example MCMC simulations
	A Sampling efficiency
	B Accuracy of parameter estimation
	1 Description of the signals
	2 Description of the analyses
	3 Discussion of the results

	C Correlations between parameters

	VII Summary and discussion
	 References

